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ABSTRACT
Over 40% of arable land in the world is acidic. Al stress has become a global agricultural problem affecting 
plant growth and limiting crop production in acidic soils. Plants have evolved different regulatory mechan-
isms of adaptation to exogenous environmental challenges, such as Al stress, by altering their growth 
patterns. In the past decades, several key genes involved in plant response to Al stress and the mechanism of 
Al detoxification have been revealed. However, the signaling pathways of plant response to Al stress and the 
regulatory mechanism of plant Al tolerance remain poorly understood. In this review, we summarized the 
findings of recent studies on the plant Al tolerance mechanism and the molecular regulation mechanism of 
phytohormones in response to Al stress. This review improves our understanding of the regulatory mechan-
isms of plants in response to Al stress and provides a reference for the breeding of Al-tolerant crops.
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1. Introduction

As the most abundant metal element on earth, Al is widespread 
in the environment. It is an amphoteric metal with active 
chemical properties; apart from reacting with strong bases, it 
also dissolves in acidic solutions. In the soil, Al normally exists 
in the form of insoluble oxides or aluminosilicates, and in this 
chemical form, it exerts no toxic effects on plants.1 When the 
soil pH is below 5.5, Al and aluminide become increasingly 
soluble and form Al3+, Al(OH)2+, or Al(OH)2

+.2–4 Solubilized 
Al, especially Al3+, is highly toxic to the root apex and severely 
restricts the ability of the root system to absorb water and 
nutrients in acidic soils.5,6 Although Al is not considered 
a nutrient element, previous studies have shown that low con-
centrations of Al3+ can promote plant growth.7,8 When the 
concentration of Al3+ in the soil reaches micromolar levels, 
plant growth and development are negatively affected and 
show symptoms of Al toxicity.9,10

Currently, approximately 40% of arable land in the world is 
acidic.11 With the increase in acid gases emitted by different 
industries as well as the increase in acid rain pollution, the 
threat of Al stress to plant growth and human food security is 
further exacerbated. Consequently, Al stress has emerged as 
crucial environmental issue for plants, second only to drought 
stress.11 Al causes toxicity and irreversible damage to the 
growth of plants, consequently affecting crop yield and 
quality.12,13 Therefore, exploring the molecular mechanisms 
of Al tolerance in plants is essential to improving agricultural 
practices, as there will be a continual demand for plants that 
can cope with environmental changes, as well as for increasing 
the production and supply of safe food.

2. Mechanisms of Al toxicity and adaptive response 
in plants
2.1 Al toxicity in plants at the cellular level
Roots are the main plant parts exposed to Al stress, and 
primary root elongation and vitality are severely inhibited by 
Al3+.14–18 When plants are exposed to Al stress, the most 
obvious symptom is the inhibition of root elongation, follow-
ing which the acquisition of water and nutrients becomes 
limited.8,19,20 Consequently, plants fail to obtain sufficient 
nutrients and begain to manifest symptoms of nutritional 
deficiencies.5,14 Moreover, Al stress can cause programmed 
cell death and leaf yellowing, which leads to early plant 
senescence.21,22 Therefore, Al stress is critical factor affecting 
plant growth and limiting crop yield in areas with acidic soil.23

As mentioned above, the toxic effect of Al on plants mainly 
occurs through the inhibition of root elongation, which further 
affects plant growth and development.24,25 For this reason, 
researchers usually use roots as experimental materials to 
explore the response mechanisms of plants to Al stress.25,26 

Previous studies have shown that Al3+ mainly affects root 
growth by inhibiting cell elongation and division.17,27,28 The 
root tip is considered the primary target site for Al3+, and the 
transition zone between the root tip meristem and the elonga-
tion zone is the root area most sensitive to Al stress.8,29–31 

Therefore, the root tip region should be the focus of research 
on Al stress resistance mechanisms.

The toxicity of Al to plants is primarily caused by its influ-
ence on cell structure and cell life activities, especially cell wall 
structure and cell division.17,27,28,32 The cell wall serves as the 
first natural barrier for plants to resist harmful environments, 
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and is vital for plant defense.33 It is rich in carboxyl and 
phosphate groups which carry a substantial amount of negative 
charge.34 Al3+ binds to the cell wall through cation exchange to 
prevent itself from binding to the plasma membrane or enter-
ing the symplasm.34,35 The amount of Al3+ binding to the cell 
wall is directly correlated with the damage to the plant.33,36,37 

Studies have shown that Al3+ thickens the cell wall and changes 
its composition, hindering cell division and elongation, conse-
quently inhibiting root elongation.17,28,38,39

Reactive oxygen species (ROS) are important signaling 
molecules in plant stress response.40,41 Oxidative stress is an 
integral aspect of the toxic effects of Al on plants.30,42,43 Al 
exposure causes the increase in ROS and leads to lipid perox-
idation, resulting in cell organelles dysfunction and 
damage.30,42–46 The over-accumulation of ROS is induced by 
Al stress, which leads to peroxidative damage to the plasma 
membrane and destroys cell membrane integrity.34,47–50 

Further studies showed that ROS accumulation and related 
cell dysfunction are also involved in Al-induced inhibition of 
cell elongation and division.47 Impairment of cellular function 
and DNA damage are major factors responsible for inhibiting 
root elongation.12,51–53 Previous research showed that the 
scavenging of ROS contributes to plant Al.43 Therefore, strate-
gies to improve the scavenging ability of ROS and reduce the 
production of ROS will be a lucrative research direction to 
enhance plant tolerance to Al stress.

Previous studies have shown that Al also affects cell- 
membranes function and numerous physiological 
processes.19,27,54 Al3+ is a blocker of various cation chan-
nels on the cell membrane. It therefore affects the absorp-
tion of mineral elements by changing plasma membrane 
fluidity and structure, further interfering with the normal 
physiological process of plant cells.19,27,55 Al3+ competi-
tively binds to Ca2+ receptors on the plasma membrane, 
inhibits Ca2+ transmembrane transport, and disrupts cyto-
solic Ca2+ homeostasis.54,56 In addition, Al3+ inhibits the 
absorption of K+ by the root system and reduces the plant 
potassium content, causing symptoms of K+ deficiency.57 

Active transport of numerous ions is driven by H+ gradi-
ent established by proton pumps, such as vacuolar H+- 
pyrophosphatase (V-PPase), vacuolar H+-ATPase 
(V-ATPase), and plasma membrane (PM) H+- 
translocating adenosine triphosphatase (PM H+-ATPase) 
.18,58,59 Al toxicity not only destroys the structure and 
physiological activities of plant cells, but also affects the 
metabolism and life processes of cells. However, further 
studies are required to reveal the mechanisms of Al 
toxicity.

2.2 Adaptive mechanisms of plant tolerance to Al toxicity

During their long-term evolution, plants have developed 
a variety of adaptation strategies to cope with Al toxicity, 
among which internal tolerance and external exclusion are 
widely considered to be the main strategies.5,14,18 The exclusion 
mechanism includes secreting organic acids (OAs) or phos-
phoric acid into the apoplastic space to chelate external 
Al.13,18,60 In addition to the chelation, the cell wall is consid-
ered another natural barrier for Al.61,62 On the other hand, the 

internal tolerance mechanisms involve the chelation of Al3+ by 
OAs in the cytosol, its transport, and the storage of its com-
plexes into vacuoles.13,18

The cell wall is the plant’s first barrier against harmful 
external environments. Studies have shown that most of the 
Al3+ absorbed by plants is distributed in the cell wall.63–65 Cell 
wall polysaccharides, especially pectin, carry numerous car-
boxyl groups and demonstrate a strong affinity for Al3+.5,27,66 

Extracellular Al3+ ions can bind directly to the cell wall.61 

Xyloglucan is an important structural component of cell 
walls. XTHs, encoded xyloglucan endotransglucosylase- 
hydrolase, are involved in cell wall extension.61 XTH31 mod-
ulates Al binding capacity by regulating the content of xyloglu-
can in the cell wall, thereby affecting plant sensitivity to Al 
toxicity.61 The fixation of Al on cell wall results in the sensitiv-
ity of root growth to Al toxicity.12 The components and struc-
ture of the cell wall are altered by Al toxicity. Excessive Al 
binding to the cell wall leads to the disruption of cell wall 
extension, thereby inhibiting cell and root elongation.61 

Multiple genes related to cell wall synthesis or modification 
are involved in plant response to Al toxicity.61,67,68 WAK1 (cell 
wall-associated receptor kinase 1) co-localizes with pectin, 
which is critical for Al binding69 GRP3, a glycine-rich protein 
(GRP), is involved in plant response to Al stress by interacting 
with AtWAK1.70 WAK1 overexpression or a mutation in GPR3 
results in enhanced plant Al tolerance.69,70 However, the mole-
cular mechanism underlying cell wall involvement in regulat-
ing plant tolerance to Al stress remains to be elucidated.

Furthermore, studies have shown that pectin methylation in 
the cell wall is related to the ability of plants to resist Al3+ 

absorption.28,33,71 PME is a gene encoding pectin methylester-
ase in plants, and its expression level in Al-tolerant plants is 
significantly lower than that in Al-sensitive plants.71 In maize, 
exogenous application of pectin methylesterase resulted in the 
accumulation of Al3+ in the roots and inhibited root 
growth.28,72 The higher the methylation level, the lower the 
cation exchange capacity in the cell wall. This, in turn, reduces 
the amount of Al3+ bound to pectin, resulting in a decrease in 
the damage caused by Al stress.28,71,72 In addition, Al3+ 

destroys the plasma membrane structure and transmembrane 
ion channels by binding to plasma membrane phospholipids. 
This inhibits the transmembrane transport of certain ions and 
interferes with the ion balance in the cell, consequently affect-
ing intracellular physiological functions.27

In plant roots, Al toxicity induces the secretion of chelating 
agents such as OAs and phosphoric acid.18,73 These substances 
chelate with Al3+ around the plant roots to form macromole-
cule chelates, thereby hampering the entry of Al3+ into cells 
and ameliorating the toxic effects of Al on plants.18 Plants 
mainly transport OAs such as malic acid and citric acid, to 
the cell exterior through a transport carrier on the plasma 
membrane to chelate Al3+ around the rhizosphere.73 The trans-
membrane transport of OAs is driven by the proton pump on 
the plasma membrane (PM H+-ATPase).18,74,75 The activity of 
the proton pump is significantly enhanced under Al stress, 
which promotes the efflux of malic and citric acids.18 In plants, 
MATE encodes a citric acid transporter, and ALMT encodes 
a malic acid transporter.73,76–79 Al stress significantly increases 
the expression of MATE and ALMT, promotes the secretion of 
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citric and malic acids, and chelates Al3+ in the rhizosphere, 
thereby reducing Al toxicity stress.73,80–84 TaALMT1, the first 
Al-tolerance gene, was identified from wheat.85 Although 
TaALMT1 is functionally active without Al stress, its transport 
capability can be improved further by Al.85–87 In addition, 
ALMT1 from other species has also been shown to improve 
Al tolerance in plants.75,88,89 Different from ALMT, MATE 
exhibits two distinct physiological functions in plants. Certain 
members of the MATE family facilitate Fe translocation while 
others are involved in external Al detoxification.73,90–92 The 
vacuole is the principal storage site for OAs. Malic and citric 
acids synthesized in the cytoplasm are transported to the 
vacuole, which enhances the plant’s internal tolerance to Al 
toxicity.18 In addition, plants express the ABC transporter 
family gene ALS3 to promote the transport of Al3+ in the 
roots and reduce the distribution of Al3+ in Al-sensitive cells 
or tissues, thereby mitigating the effects of Al toxicity on 
plants.93

Previous studies showed that STOP1, a C2H2-type tran-
scription factor, plays an important role in plant Al 
resistance;80,86 it enhances plant tolerance to Al by regulating 
the expression of Al-resistance genes, including ALS3, MATE, 
and ALMT1 (Figure 1).6,73,80,86 Al stress promotes the accu-
mulation of STOP1 in cells.6 STOP1 directly acts on the pro-
moter region of RAE1 to augment the expression of RAE1, and 
RAE1 interacts with the STOP1 protein through the ubiquiti-
nated 26S protease pathway to promote the degradation of 
STOP1.6 Therefore, a feedback regulation loop is formed 
between RAE1 and STOP1 (Figure 1).6

The secretion of malate and citrate by root cells plays 
a crucial role in plant Al tolerance and contribute to its 
detoxification.73 Al-activated malate and citrate exudation 
were found to be affected by the loss of the STOP1 function, 
and the stop1 mutant showed increased sensitivity to Al.73,80 

To cope with Al toxicity, plants secrete OAs to chelate external 
Al and/or regulate the expression of related genes responsible 
for plant Al-resistance (Table 1).6,18,25,73,77,78,85,90,93–105 

Although plants have different regulatory mechanisms and 
adaptive strategies to cope with Al toxicity, the molecular 
mechanisms underlying these strategies remain largely unclear.

Previous studies have shown that the ability of plants to 
tolerate Al stress is related to rhizosphere pH.3 Al solubility 
increases under acidic conditions, whereas it decreases signifi-
cantly in a weakly alkaline environment. In addition to the 
chelation of Al3+ by OAs secretion, the solubility of Al can also 
be decreased by maintaining a higher pH of the rhizosphere 
and reducing the entry of Al3+ into the plant. This strategy is 
considered an effective method to enhance plant Al resistance. 
Therefore, a higher pH environment is beneficial for enhancing 
plant Al tolerance and alleviating its toxicity.106,107

2.3 Hormone signaling in plant Al stress response: 
ethylene and auxin as the key factors

Phytohormones play key roles in plant growth regulation in 
response to Al stress (Table 2).8,19,20,25,108–112 Al stress upregu-
lates TAA1 and YUCs (YUC3/5/7/8/9) in the roots, which 
promotes a localized increase in auxin synthesis and causes 

Figure 1. Proposed model for the regulation of malate and citrate secretion by STOP1 in response to Al stress and the proposed signaling pathway of Al-activated root 
malate and citrate exudation based on recent research on Arabidopsis.6,18,73,94,95 In response to Al stress, Al3+ signals can be perceived by the plant and trigger the 
accumulation of STOP1 in the cell. As a transcription factor, STOP1 upregulates the expression of RAE1, ALMT1, and MATE. RAE1 reduces the amount of STOP1 by 
promoting the ubiquitination (Ub) and degradation of STOP1.6,18,95 Al-activated excretion of malate and citrate occurs through the PM localized transporters of ALMT1 
and MATE, respectively. The secretion of OAs plays a critical role in plant Al tolerance through the chelation of external Al.
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Table 2. Hormone signaling-related genes in plant response to Al stress.

Gene
GenBank 
accession Gene type

The 
subcellular 

location Species
Gene expression 

patterns References

ACS2 AT1G01480 Ethylene synthesis genes Arabidopsis 
thaliana

Al-induced up- 
regulation

19

ACS4 AT2G22810 Ethylene synthesis genes Arabidopsis 
thaliana

Al-induced up- 
regulation

19

ACS6 AT4G11280 Ethylene synthesis genes Arabidopsis 
thaliana

Al-induced up- 
regulation

19

ACO1 AT2G19590 Ethylene synthesis genes Arabidopsis 
thaliana

Al-induced up- 
regulation

19

ACO2 AT1G62380 Ethylene synthesis genes Arabidopsis 
thaliana

Al-induced up- 
regulation

19

EBS Ethylene reporter, a synthetic EIN3-responsive promoter Arabidopsis 
thaliana

Al-induced up- 
regulation

19

EIL1 AT2G27050 Ethylene signaling, transcription factors Arabidopsis 
thaliana

Al-induced up- 
regulation

20

EIN3 AT3G20770 Ethylene signaling, ethylene-insensitive 3 (EIN3) Arabidopsis 
thaliana

Al-induced up- 
regulation

20

DR5 Auxin-responsive marker Zea mays 
(Maize)

Al-induced down- 
regulation

25

DR5 Auxin-responsive marker Arabidopsis 
thaliana

Al-induced up- 
regulation

19

TAA1 AT1G70560 Auxin biosynthesis, Trp aminotransferase Arabidopsis 
thaliana

Al-induced up- 
regulation

8

YUC3 AT1G04610 Auxin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

20

YUC5 AT5G43890 Auxin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

20

YUC7 AT2G33230 Auxin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

20

YUC8 AT4G28720 Auxin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

20

YUC9 AT1G04180 Auxin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

20

PIN1 AT1G73590 Auxin efflux carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

PIN2 AT5G57090 Auxin efflux carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced up- 
regulation

19,108

OsPIN2 Os06g44970 Auxin efflux carriers Plasma 
membrane

Oryza sativa 
(Rice)

Al-induced up- 
regulation

109

PIN3 AT1G70940 Auxin efflux carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

PIN4 AT2G01420 Auxin efflux carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

PIN7 AT1G23080 Auxin efflux carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

AUX1 AT2G38120 Auxin influx carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

19,108

LAX1 AT5G01240 Auxin influx carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

LAX2 AT2G21050 Auxin influx carriers Plasma 
membrane

Arabidopsis 
thaliana

Al-induced 
ectopically up- 
regulated

108

ZmPGP1 GRMZM2G315375 Auxin efflux carrier P-glycoprotein Zea mays 
(Maize)

Al-induced up- 
regulation

25

ARF7 AT5G20730 Auxin response factors Arabidopsis 
thaliana

Al-induced up- 
regulation

110

ARF10 AT2G28350 Auxin response factors (ARFs), ARF10 is important in the regulation 
of cell wall modification–related genes

Arabidopsis 
thaliana

8

ARF16 AT4G30080 auxin response factors (ARFs), ARF16 is important in the regulation 
of cell wall modification–related genes

Arabidopsis 
thaliana

8

ZmIAA2 Zm00001d033976 Auxin-responsive genes Zea mays 
(Maize)

Al-induced down- 
regulation

25

ZmIAA10 Zm00001d041416 Auxin-responsive genes Zea mays 
(Maize)

Al-induced down- 
regulation

25

ZmIAA21 Zm00001d013302 Auxin-responsive genes Zea mays 
(Maize)

Al-induced down- 
regulation

25

(Continued)
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root growth inhibition.8,20 Ethylene has been reported to reg-
ulate plant Al tolerance through crosstalk with auxin 
signaling.19,20 Al exposure upregulates the expression of ethy-
lene biosynthesis-related genes, such as ACSs and ACOs, 
thereby promoting ethylene synthesis.19 As a signaling mole-
cule, ethylene activates specific expression of the transcription 
factors EIN3 and EIL1 in the root apex transition zone.20 EIN3 
directly binds to the promoters of YUC9 and activates its 
expression.20 The expression of PIF4 is also regulated by 
EIN3 and EIL1; moreover, the bHLH transcription factor 
PIF4 affects auxin biosynthesis and signaling by directly reg-
ulating the expression of YUC5, YUC8, and YUC9.20 In addi-
tion, ethylene also upregulates the expression of TAA1 and 
promotes the local biosynthesis of auxin in the root apex 
transition zone to enhance the inhibition of root growth.8 

Therefore, the accumulation of auxin induced by Al stress is 
regulated by ethylene signaling.19

Recent studies have shown that the polar transport of auxin 
is also involved in plant response to Al stress.109 Ethylene 
production was found to be induced by Al3+, which acts as 
a signal to disrupt polar auxin transport by upregulating the 
expression of AUX1 and PIN2 auxin transporters, leading to 
auxin accumulation in the roots and inhibiting root growth.19 

Overexpression of the auxin efflux carrier OsPIN2 can alleviate 
Al-induced damage to the roots, which is a consequence of the 
decrease in extracellular Al3+ binding to the cell walls and 
reduced Al-targeted peroxidative cellular damage.109 In 
maize, the auxin efflux carrier ZmPGP1 is involved in regulat-
ing auxin distribution in the root response to Al stress. 
ZmPGP1 expression was induced by Al treatment, but the 
accumulation of auxin was reduced in root tips.25

Although auxin plays an important role in plant response to 
Al stress, its regulation mechanism varies completely among 
different plant species.8,25 In Arabidopsis, Al stress induces the 
biosynthesis and accumulation of auxin in the root apex tran-
sition zone, and excessive auxin inhibits root growth.8 

However, in maize, Al stress reduces auxin accumulation and 
inhibits root growth.25 These two distinct actions of auxin 
imply that the auxin regulation mechanisms differ among 
plant species; however, their molecular background remains 
unclear.8,20,25

TIR1/AFB-mediated auxin signaling pathways play vital 
roles in regulating root elongation.113,114 However, there are 
conflicting experimental results concerning TIR1/AFB signal-
ing in root growth under Al stress.4,8,115 Previous studies have 
shown that tir1-1 and tir1-1;afb2-1;afb3-1 mutants and wild 
type (WT) did not differ significantly in Al-induced root 
growth inhibition.4 However, Yang et al. (2014) found that 
the Al stress-induced auxin signals were significantly decreased 
by PEO-IAA (specific antagonists to block TIR1/AFB signal-
ing) treatment.8 Consistently, TIR1/AFB is involved in the 
regulation of barley root growth inhibition under Al stress.115 

These contradictory experimental results might be due to the 
different pH values of the AlCl3 solutions used in different 
experiments. The pH 7.0 was used in the former experiment4 

while pH 4.3 and 5.0 was used in the other two 
experiments,8,115 respectively. Al3+ is mainly formed at 
pH≤5.0, whereas at pH 7.0 Al(OH)3 is predominant.4 

Therefore, different forms of aluminum present lead to distinct 
results. Based on these results, it is inferred that Al-induced 
inhibition of root growth is regulated by TIR1/AFB-mediated 
auxin signaling pathways (Figure 2).87,108,113,115 Moreover, 

Table 2. (Continued).

Gene
GenBank 
accession Gene type

The 
subcellular 

location Species
Gene expression 

patterns References

ZmGH3 Zm00001d011377 Auxin-responsive genes Zea mays 
(Maize)

Al-induced down- 
regulation

25

ARR3 AT1G59940 CK-induced genes Arabidopsis 
thaliana

Al-induced up- 
regulation

110

ARR4 AT1G10470 CK-induced genes Arabidopsis 
thaliana

Al-induced up- 
regulation

110

TCSn CK signaling, Two Component Signaling Sensor new (TCSn) Arabidopsis 
thaliana

Al-induced up- 
regulation

110

IPT1 AT1G68460 Cytokinin biosynthesis, adenosine phosphate isopentenyl- 
transferases

Arabidopsis 
thaliana

Al-induced up- 
regulation

110

IPT3 AT3G63110 Cytokinin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

110

IPT5 AT5G19040 Cytokinin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

110

IPT7 AT3G23630 Cytokinin biosynthesis Arabidopsis 
thaliana

Al-induced up- 
regulation

110

PIF4 AT2G43010 The basic helix–loop–helix transcription factors, Phytochrome- 
interacting factor 4 (PIF4)

Arabidopsis 
thaliana

Al-induced up- 
regulation

20

COI1 AT2G39940 Jasmonate (JA) receptor, Coronatine Insensitive 1 Arabidopsis 
thaliana

Al-induced up- 
regulation

111

MYC2 AT1G32640 JA signaling regulator Arabidopsis 
thaliana

Al-induced up- 
regulation

111

AOS AT5G42650 JA biosynthesis related genes Arabidopsis 
thaliana

Al-induced up- 
regulation

111

AOC3 AT3G25780 JA biosynthesis related genes, Allene Oxide Cyclase 3 Arabidopsis 
thaliana

Al-induced up- 
regulation

111

OPR3 At2g06050 JA biosynthesis related genes, Oxophytodienoate-reductase 3 Arabidopsis 
thaliana

Al-induced up- 
regulation

111
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whether the known signaling pathway of TIR1/AFB-mediated 
apoplast alkalization is also involved in Al-induced root growth 
inhibition requires further study (Figure 2).

As transcription factors, auxin response factors (ARFs) are 
involved in auxin signaling downstream of TIR1/AFB. The 
auxin-regulated root growth inhibition induced by Al stress is 
mainly mediated by ARFs, which activates the expression of 
auxin response genes.8,20,111 ARF7 promotes cytokinin bio-
synthesis by upregulating the expression of IPT5 and IPT7, 
whereas ARF10 and ARF16 are involved in Al-induced inhibi-
tion of root growth by regulating the expression of cell wall 
modification-related genes.8,111

In summary, Al-induced ethylene production is involved in 
auxin signaling to control root elongation under Al stress 
(Figure 2). Although studies have shown that exogenous appli-
cation of auxin can increase the expression of ALMT1, malate 
exudation was not affected by its application.116 The cumula-
tive evidence indicates that auxin and OAs exudation indepen-
dently regulate the Al-induced inhibition of root growth.8

3. Conclusions

Al stress is a major constraint for plant growth and crop yield in 
acidic soils. Therefore, over the past decade, studies aimed at 
elucidating the physiological and molecular mechanisms under-
lying plant tolerance to Al toxicity have attracted intense research 
interest. To cope with Al toxicity, many plant species have 
evolved various mechanisms to survive in unfavorable environ-
ments. There are two adaptive mechanisms that enable plants to 
withstand Al stress in acidic soils: external Al exclusion and 
internal Al tolerance.14,73 The mechanism underlying internal 
Al tolerance involves Al fixation in the cell wall, Al chelation by 
OAs in the cytosol, or Al sequestration into the vacuole. The 
exclusion mechanism involves the secretion of OAs from plant 
roots for Al3+ chelation. Although the responses of different plant 
species to Al share the same or similar regulatory mechanisms, 
there are still slight differences among different plant species, 
which depend on the signaling pathway activated by Al. Further 
research will help reveal species-specific mechanisms of plant Al 

Figure 2. Schematic representation of ethylene- and auxin-mediated regulation of root growth inhibition in response to Al stress. The proposed hormone signaling 
pathway under Al stress was based on recent research on plants.8,19,20,87,108,110,111,114,115 The root tip is considered the main site that identifies Al toxicity. The transition 
zone (TZ) between the meristem and the elongation zone of the root apex is the most sensitive area for plants to perceive Al stress. Al stress induces auxin response in 
the root TZ, which is dependent on the ethylene signaling pathway. Al3+ was found to upregulate the expression of ACSs and ACOs and promote ethylene 
biosynthesis.19 Ethylene promotes local auxin accumulation through TAA1- and YUCs-mediated local auxin biosynthesis.8,20,110 In addition, ethylene promotes local 
auxin accumulation through AUX1- and PIN2-mediated polar auxin transport, resulting in root growth inhibition.19,108 ARF-mediated auxin signaling controls the Al- 
induced inhibition of root growth by regulating IPT-dependent cytokinin biosynthesis and cell wall modification-related genes.8,110,111
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tolerance. The Al tolerance phenotypes are the result of both 
environmental and genetic factors. In agricultural practices, two 
methods are used to overcome the threat of Al toxicity and 
improve plant tolerance to Al stress. Furthermore, the low pH 
values of acidic soils can be improved by applying alkaline 
substances such as CaO or Ca(OH)2; however, this requires 
considerable manpower and material resources. This issue 
should instead be tackled by planting Al-tolerant species or by 
improving cultivars through molecular-assisted plant breeding.

From the perspective of coping with changes in environ-
mental conditions, breeding Al-tolerant and Al-insensitive 
plant species is the most effective and economical way to 
improve their ability to cope with Al stress. Exploring the 
response mechanism of different plant species to Al stress 
will help us understand the different pathways of Al tolerance. 
Using transcriptome analysis and genetic engineering technol-
ogy to identify genes related to Al stress and improve plant Al 
tolerance via transgenic technology will be one of the most 
effective methods for breeding Al-tolerant plants.
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